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Abstract

Fine-grained image classification is challenging due to the
large intra-class variance and small inter-class variance, aim-
ing at recognizing hundreds of sub-categories belonging
to the same basic-level category. Since two different sub-
categories is distinguished only by the subtle differences in
some specific parts, semantic part localization is crucial for
fine-grained image classification. Most previous works im-
prove the accuracy by looking for the semantic parts, but rely
heavily upon the use of the object or part annotations of im-
ages whose labeling are costly. Recently, some researchers
begin to focus on recognizing sub-categories via weakly su-
pervised part detection instead of using the expensive anno-
tations. However, these works ignore the spatial relationship
between the object and its parts as well as the interaction of
the parts, both of them are helpful to promote part selection.
Therefore, this paper proposes a weakly supervised part se-
lection method with spatial constraints for fine-grained im-
age classification, which is free of using any bounding box or
part annotations. We first learn a whole-object detector auto-
matically to localize the object through jointly using saliency
extraction and co-segmentation. Then two spatial constraints
are proposed to select the distinguished parts. The first spa-
tial constraint, called box constraint, defines the relationship
between the object and its parts, and aims to ensure that the
selected parts are definitely located in the object region, and
have the largest overlap with the object region. The second
spatial constraint, called parts constraint, defines the relation-
ship of the object’s parts, is to reduce the parts’ overlap with
each other to avoid the information redundancy and ensure
the selected parts are the most distinguishing parts from other
categories. Combining two spatial constraints promotes parts
selection significantly as well as achieves a notable improve-
ment on fine-grained image classification. Experimental re-
sults on CUB-200-2011 dataset demonstrate the superiority
of our method even compared with those methods using ex-
pensive annotations.

Introduction
Fine-grained image classification is an extremely challeng-
ing task, which aims to distinguish the objects in subordinate
classes, such as bird types (Wah et al. 2011), dog species
(Khosla et al. 2011), plant breeds (Angelova and Zhu 2013)
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and aircraft models (Maji et al. 2013) etc. An inexperienced
person can easily recognize basic-level categories such as
birds, horses and dogs, since they vary a lot in appearance.
He may know several kinds of birds, but it would be very
difficult to recognize 200 or even more sub-categories. For
example, it is extremely hard for an inexperienced person
to distinguish between Herring Gull and Slaty-backed Gull
whose appearance are very similar, as both of them have the
gray back and pink legs. These subordinate classes share the
same global appearance, and are often distinguished by the
subtle differences in their parts (e.g. Herring Gull and Slaty-
backed Gull are distinguished by the color of the back, the
latter’s is deeper). Therefore, the object and its salient parts
are crucial for fine-grained image classification.

Since the discriminative features are mainly localized on
the object and its parts, most existing works follow the
pipeline: localizing the object or its parts firstly, and then ex-
tracting discriminative features for fine-grained image clas-
sification. As the fine-grained image classification datasets
(e.g. CUB-200-2011 (Wah et al. 2011)) mostly have the
detailed annotations like bounding box and part locations,
early works directly use the detailed annotations at both
training and testing stage. The works of (Chai, Lempitsky,
and Zisserman 2013; Yang et al. 2012) use the provided
bounding box to learn part detectors in a unsupervised or
latent manner. Several methods even use the part annota-
tions (Berg and Belhumeur 2013; Xie et al. 2013). Since
the annotations of the testing image are not available in the
practical applications, some works use the object or part an-
notations only at training stage and no knowledge of anno-
tations at testing stage. Bounding box and Part annotations
are directly used in training phase to learn a strongly su-
pervised deformable part-based model (Zhang et al. 2013;
Azizpour and Laptev 2012) or directly used to fine-tune the
pre-trained Convolutional Neural Net (CNN) (Branson et al.
2014). Further more, Krause et al. (Krause et al. 2015) only
uses bounding box at training stage to learn the part de-
tectors, then localize the parts automatically in the testing
stage. Recently, there are some promising works attempting
to learn the part detectors under the weakly supervised con-
dition, i.e. the bounding box and part annotations are not
used at training or testing stage. These works make it possi-
ble to put the fine-grained image classification into practical
applications. Neural Activation Constellations Part Model
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Figure 1: An overview of our proposed method to localize the object and its parts. Our approach consists of two stages. The first
stage aims at localizing the object via (b) saliency extraction and (c) co-segmentation for each input image. The second stage
is to select the semantic parts for fine-grained image classification. Based on the object location information and the saliency
map, parts are selected driven by two spatial constraints: box constraint and parts constraint. The red rectangles in (f) denote the
bounding boxes produced by the proposed method automatically, and the green and blue rectangles denote the selected parts.

(NAC) (Simon and Rodner 2015) proposes to localize parts
with constellation model, Two Level Attention Model (TL
Atten) (Xiao et al. 2015) applies two attention models to se-
lect relevant proposals to the object and the discriminative
parts, and Picking Deep Filter (PD) (Zhang et al. 2016b) in-
corporates deep convolutional filters for both part detection
and description. However, they all ignore the object localiza-
tion and the spatial relationship between the object and its
parts as well as the interaction of the parts. The object local-
ization can remove the influence of the background noise to
obtain the meaningful global feature, and the two spatial re-
lationships is significant for selecting the discriminative and
useful parts, both of them can promote significant effects on
fine-grained image classification.

Therefore, this paper proposes a framework for fine-
grained image classification without using bounding box or
part annotations. The main contributions of this paper can be
concluded as follows:

Object Localization We learn a whole-object detector
without using bounding box, but only class label. First, a
saliency map (Simonyan, Vedaldi, and Zisserman 2013) is
extracted for each image with the fine-tuned CNN. It can
provide the saliency information over the input image, which
helps to localize the object preliminarily. But the generated
bounding box is typically much bigger than the ground truth
bounding box. Then, we leverage co-segmentation (Krause
et al. 2015) to make the coarse granularity bounding box
become more accurate. To the best of our knowledge, this
paper is the first work to localize the object for fine-grained
classification only using whole image label, without the ex-
pensive labor annotations like bounding box, and the effect
of the class label is weakened in our method.

Part Selection In order to find the distinguishing parts, we
propose two spatial constraints to guide the part selection

process.

• Box constraint. One intuitive idea to select the distin-
guishing parts is to consider the parts inside the object
region. However, the previous weakly supervised works
ignore the intuitive idea so that the selected parts may be
outside the object region, which is a side-effect for classi-
fication. Therefore, we apply the box constraint to enforce
that the selected parts are definitely located in the region
of the object. Additionally, in order to obtain more useful
information, we guide the selection process to favor the
parts group which has the largest overlap with the object
region. With box constraint, the selected parts have these
characteristics: definitely located in the object and highly
representative.

• Parts constraint. Previous works only concern about
the parts’ responses, but ignore the parts constraint. So
that the selected parts of the same object may contain the
similar information, which is redundant for fine-grained
image classification. From another point of view, it makes
some meaningful part left out. Therefore, we conduct the
parts constraint on the parts selection process to reduce
the overlap with each other and ensure the selected parts
are the most distinguishing parts from other categories.

Weakly Supervised Learning of Part Selection
Model with Spatial Constraints

In this section, the proposed method is described. It is impor-
tant to note that only class labels of training images are used
in our method. Fig. 1 shows the overview of our proposed
method to localize the object and its parts, which consists of
two stages. The first stage aims at localizing the object via
saliency extraction and co-segmentation. The second stage
is to select the distinguishing parts for improving the per-
formance. Based on the object location information and the
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saliency map, parts are selected by two spatial constraints:
box constraint and parts constraint.

Table 1: Precision of the bounding box produced by the
object localization method on CUB-200-2011 dataset. The
precision is computed with the ground truth bounding box,
defined by the proportion of Intersection-over-Union (IoU)
overlap with ground truth bounding box at least 0.5, 0.6 and
0.7 respectively.

Method
IoU 0.5 0.6 0.7

saliency extraction 64.20% 41.08% 19.31%
+co-segmentation 65.52% 46.16% 28.36%

Object Localization
Existing weakly supervised works focus on the part local-
ization or selection without using the object or part annota-
tions. However, they ignore the object localization which is
not only crucial for improving the classification performance
but also helpful to select the distinguishing parts. In this sec-
tion, we propose a new object localization method through
jointly using saliency extraction and co-segmentation with-
out using bounding box. Our proposed method consists of
two stages: saliency extraction and co-segmentation. The
first stage is to localize the object preliminarily with the
saliency information produced by the CNN model. The ob-
ject information obtained from the first stage is not accurate
enough, so the second stage is to make the object informa-
tion more accurate for fine-grained image classification by
co-segmentation. Fig. 2 presents the results of each stage on
CUB-200-2011. The sub figure (a) shows the original im-
ages, (b) shows the saliency maps of the original images
and (c) shows the segmentation results of co-segmentation
method. In (d) the blue rectangles represent the ground truth
bounding boxes of the objects, the red rectangles represent
the bounding boxes produced by saliency extraction and the
green rectangles represent the bounding boxes produced by
co-segmentation on the basis of the red rectangles. We can
see that the bounding boxes become more accurate through
the co-segmentation process.

Saliency Extraction The previous work (Simonyan,
Vedaldi, and Zisserman 2013) generates a saliency map for
an input image with a classification CNN model and the
class label of the image. However, in testing stage, the class
label information is unknown. Fortunately, in fine-grained
image classification, all the classes belong to a basic-level
category, and they have the similar appearance which allows
to get the saliency map without using the class label.

Given an image I (width: n, height: m, channel: c), a class
label s (in our experiments, s = 50, which affects the results
a little) and a classification CNN model which is fine-tuned
from the pre-trained CNN model on ImageNet (Deng et al.
2009), the saliency map M ∈ Rm×n is computed as follows.
First, the derivative ω of the class score function is computed
by the back-propagation algorithm. Then, to derive a single

(a) (b) (c) (d)

Figure 2: Illustration of the results our object localiza-
tion method. (a) shows the original images, (b) shows the
saliency maps of the original images and (c) shows the seg-
mentation results of co-segmentation method. In (d) the blue
rectangles represent the ground truth bounding boxes of the
objects, the red rectangles represent the bounding boxes pro-
duced by saliency extraction and the green rectangles repre-
sent the bounding boxes produced by co-segmentation on
the basis of the red rectangles.

saliency value for each pixel (i, j) of image I , we take the
maximum magnitude of ω across all color channels: Mij =
maxc|ωh(i,j,c)|, where h(i, j, c) is the index of the element
of ω corresponding to the image pixel in the i-th row, j-th
column and c-th channel.

When the saliency map is produced, we conduct the bina-
rization and connected area operations to get the bounding
box of the object. But through this process, the bounding
boxes are not accurate enough, as the red rectangles shown
in Fig. 2 (d), they are much bigger than the ground truth
bounding boxes denoted by the blue rectangles.

Co-segmentation In order to get more accurate bound-
ing box, a figure-ground segmentation of each image is
established via co-segmentation (as shown in Fig. 2 (c)).
Existing co-segmentation methods (Rubinstein et al. 2013;
Joulin, Bach, and Ponce 2010) typically assume that the
bounding box of the object is not available, while we have
gotten the bounding box through the saliency extraction pro-
cess, which is helpful even though it is not accurate enough.
Then we modify the co-segmentation algorithm in (Krause
et al. 2015), which has been proved effective and efficient to
get the more accurate bounding box. Different from (Krause
et al. 2015), we do not use any annotation at both training
and testing stage.

Given an image I , let θIf be a foreground model and θIb
be a background model, both of which are represented as
Gaussian mixture models. yIp denotes the pixel p of an image
I either foreground or background, its corresponding RGB
value is vIp , the set of segmentation assignments across all
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images is Y , and pf is a pixelwise foreground prior. The
objective is:

max
Y,θ

∑
I

(
∑
p

E(yIp, θ
I ; pIf ) +

∑
p,q

E(yIp, y
I
q )) (1)

where

E(yIp, θ
I ; pIf ) = (1− yIp)log(p(v

I
p; θ

I
b ))

+
yIp
2
log(p(vIp; θ

I
f )) + E(yIp; pf ), (2)

E(yIp, pf ) =

{
log(pf ) yIp = 1

log(1− pf ) yIp = 0
(3)

E(yIp, y
I
q ) is to enforce consistency between neighboring

pixels p and q with respect to their assigned binary fore-
ground or background values. The optimization process fol-
lows (Krause et al. 2015).

Table 1 shows that we can get more accurate bounding
box of the object through co-segmentation than only through
saliency extraction. With the accurate bounding box, we can
get the semantic parts through the proposed part selection
method with spatial constraints.

Part Selection
Since the semantic parts are crucial for fine-grained im-
age classification, the previous works (Xiao et al. 2015;
Zhang et al. 2016b) always select semantic parts from the re-
gion proposals produced by some objectness methods (e.g.
selective search (Uijlings et al. 2013)). These works ignore
the spatial relationships between the object and its parts as
well as the interaction of the parts. In this section, a new part
selection method with two spatial constraints is described,
which consists of two stages: generating part proposals and
spatial constraints. The first stage is to generate part pro-
posals for selecting distinguishing parts. Selective search is
applied to extract the part proposals from each image. Then
the second stage selects the parts which denote the key parts
distinguished from other classes.

Generating Part Proposals The raw candidate part pro-
posals are produced in a bottom-up process, grouping pixels
into regions that highlight the likelihood of parts of some
objects. In this stage, we apply selective search to produce
the candidate part proposals for each image. These proposals
contain some key parts for fine-grained image classification,
but with high recall and low precision. It is necessary to filter
these proposals to get the real distinguishing parts.

Spatial Constraints With the bounding box and part pro-
posals produced in the previous stage, spatial constraints are
proposed for part selection. Two spatial relationships are
considered: the relationship between object and its parts,
called box constraint, and the relationship of parts, called
parts constraint.

Given an image I , its saliency map M is produced at
saliency extraction stage and its bounding box b is gener-
ated at object localization stage, parts selection process is
conducted as follows. Let L = {l1, l2, ..., ln} denotes the
locations of n parts for each image. In order to select the

Table 2: Performances of different variants of our method
on CUB-200-2011. “TSC” refers to the proposed part
selection method with two spatial constraints, “BC” refers
to box constraint, “PC” refers to parts constraint , and
“without-TSC” refers to part selection without any spatial
constraints.

Method Acc. (%)
VGG-ft-TSC 84.69
VGG-ft-BC 81.01
VGG-ft-PC 77.06

VGG-ft-without-TSC 75.94
VGG-ft (Baseline) 74.91

distinguishing parts from the part proposals, we consider the
joint of two spatial constraints by solving the following op-
timization problem:

L∗ = arg max
L

Δ(L) (4)

where Δ(L) is defined as a scoring function over two spatial
constraints and its formulation is defined as follows:

Δ(L) = Δbox(L)Δparts(L) (5)
in which Δbox(L) denotes the box constraint and Δparts(L)
denotes the parts constraint, detailed in the following para-
graphs.

Box constraint. As we know, the distinguishing parts
must be inside the object region. So a intuitive spatial con-
straint function is defined as:

Δbox(L) =

n∏
i=1

fb(li) (6)

where

fb(l) =

{
1 IoU(l) > 0.7

0 otherwise
(7)

and IoU(l) defines the proportion of Intersection-over-
Union (IoU) overlap of the part region and the object bound-
ing box. It is important to note that the object bounding
box is obtained automatically in object localization, not the
ground truth bounding box. The object and part annotations
are not used in any stage of our method.

Parts constraint. Since the spatial relationship of parts
is ignored in previous works, the selected parts may have
large overlap with each other. This issue makes some se-
lected parts redundant for classification. Therefore, we con-
sider the parts constraint in our method as follows:
Δparts(L) = log(AU −AI −AO) + βlog(Mean(MAU

))
(8)

where A denotes the area of the object or part region. In de-
tail, AU is the union area of the n parts, AI is the intersection
area of the n parts, AO is the area outside the object region
and

Mean(MAU
) =

∑
i,j

Mij (9)

where pixel (i, j) locates in the union area of the parts. And
β is the trade-off configure, in our experiments, β = 1.
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Figure 3: Some results of object localization and parts selection. The first row denotes the original images, the localized objects
of the original images are shown in the second row and the selected parts are shown in the third and fourth rows respectively.
The last two columns show some failure cases.

Experiments
This section presents the evaluations and analyses of the pro-
posed method on the challenging CUB-200-2011 (Wah et al.
2011) fine-grained image classification benchmark. It con-
tains 11,788 images of 200 types of birds, 5,994 for training
and 5,794 for testing. Every image has detailed annotations:
15 part locations, 312 binary attributes and 1 bounding box.

Implementation Details
CNN models In our experiments, we apply the widely
used model of VGGNet (Simonyan and Zisserman 2014).
It is important to note that the model used in our proposed
method can be replaced with any CNN model. The reason of
choosing VGGNet is for fair comparison with state-of-the-
art methods. The model is pre-trained on ILSVRC 2012, and
then fine-tuned on the CUB-200-2011 dataset. In the fine-
tuning step, we followed the strategy of (Xiao et al. 2015).
First, we apply the selective search to generate patches for
each image. Then the pre-trained CNN model on ILSVRC
2012 is used as a filter net for selecting the patches relevant
to the object. With the selected patches, we fine-tune the pre-
trained model, called ObjectNet.

Classification framework At training stage, we generate
the object and its parts of each training image first. Then a
part-level CNN model is trained from the ObjectNet with
the data of the generated parts, called PartNet. Now we have
two models which have the same network structure but are
applied for different purposes. At testing stage, we first ob-
tain the object and its parts automatically by our method for
each testing image, then use the ObjectNet to get prediction
scores of the object and original image, and use the PartNet
to get prediction scores of the selected parts. In our exper-
iments, the number of the selected parts is 2, and the final
classification is obtained by fusing the above predictions.

Results and Analyses
This part presents the results and detailed analyses of the
proposed part selection method with two spatial constraints.

Results of the object localization and its parts selection
Fig. 3 shows some results of our method. The first row de-
notes the original images, the localized objects of the orig-
inal images are shown in the second row and the selected
parts are shown in the third and fourth rows respectively. We
can see that the selected parts have the semantic meanings,
the third row denotes the body of the object and the third de-
notes the head. In some cases (e.g. two or more birds are in
the same picture, the bird is in heavy occlusion), our method
may be out of work. The last two columns show some failure
cases.

Detailed analyses of the proposed method We perform
detailed analyses by comparing different variants of the pro-
posed method. “VGG-ft” denotes the baseline of our method
without any knowledge of the object or its parts. “TSC”
refers to the proposed part selection method with two spa-
tial constraints, “BC” refers to box constraint, “PC” refers
to parts constraint , and “without-TSC” refers to part se-
lection without any spatial constraints. Each constraint can
boost the accuracy respectively, and the combination of two
constraints further improve the classification accuracy. From
Table 2, we can observe that:

(1) Part selection with two spatial constraints boosts the
performance significantly. Comparing with the baseline,
TSC brings about a nearly 10% (74.91% → 84.69%) im-
provement. If we select the parts without the two spatial con-
straints (i.e., only based on the constraint of formula (9)), it
only has about 1% improvement over the baseline.

(2) Box constraint plays a more important role than parts
constraint. In our experiments, we find that only considering
box constraints can achieve a better performance than only
considering parts constraint (81.01% vs. 77.06%). And from
Table 1 we can see that the performance of object localiza-
tion is not accurate enough, so if it could be more accurate,
the performance of the proposed method would be better.

(3) Combining box constraint and parts constraint can
achieve more accurate result than only one constraint is
considered (84.69% vs. 81.01% and 77.06%). It proves the
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Table 3: Comparisons with state-of-the-art methods on CUB-200-2011.

Method Train Anno. Test Anno. Acc. (%) NetBbox Parts Bbox Parts
Our TSC 84.69 VGGNet

PD+FC-CNN (Zhang et al. 2016b) 82.60 VGGNet
NAC (Simon and Rodner 2015) 81.01 VGGNet

TL Atten (Xiao et al. 2015) 77.90 VGGNet
VGG-BGLm (Zhou and Lin 2015) 75.90 VGGNet

Spatial Transformer (Jaderberg et al. 2015) 84.10 GoogleNet
Bilinear-CNN (Lin, RoyChowdhury, and Maji 2015) 84.10 VGGNet&VGG-M

PG Alignment (Krause et al. 2015)
√ √

82.80 VGGNet
Triplet-A (64) (Cui et al. 2015)

√ √
80.70 GoogleNet

VGG-BGLm (Zhou and Lin 2015)
√ √

80.40 VGGNet
PN-CNN (Branson et al. 2014)

√ √
75.70 AlexNet

Part RCNN (Zhang et al. 2014)
√ √

73.50 AlexNet
SPDA-CNN (Zhang et al. 2016a)

√ √ √
85.14 VGGNet

PN-CNN (Branson et al. 2014)
√ √ √ √

85.40 AlexNet
Part RCNN (Zhang et al. 2014)

√ √ √ √
76.37 AlexNet

POOF (Berg and Belhumeur 2013)
√ √ √ √

73.30
GPP (Xie et al. 2013)

√ √ √ √
66.35

complementarity of box constraint and parts constraint in
fine-grained image classification. The two spatial constraints
have the different but complementary focuses: the box con-
straint focuses on the selected parts must definitely located
in the object region and have the largest overlap with the ob-
ject region; the parts constraint focuses on the selected parts
must have little overlap with each other to avoid the infor-
mation redundancy.

Comparisons with state-of-the-art methods Table 3
shows the comparison results of the proposed method with
state-of-the-art methods on CUB-200-2011. Bounding box,
part annotations and the CNN model used in the methods are
listed for fair comparison. Early works (Berg and Belhumeur
2013; Xie et al. 2013) choose SIFT (Lowe 2004) as features,
and the performance is limited. When applying CNN model,
our method is the best among methods under the same set-
ting (Zhang et al. 2016b; Simon and Rodner 2015; Xiao et
al. 2015; Zhou and Lin 2015), and obtains a 2.09% higher
accuracy than the best performing result of PD (Zhang et
al. 2016b) (82.60%). PD also has another result of 84.54%
which is 0.15% lower than our method. PD has two contri-
butions: part detection and feature encoding, 82.60% is the
result of part detection and 84.54% is the result of combin-
ing part detection and feature encoding. Since the goal of
this paper is to improve the performance of part selection
or detection, we do not focus on the influence of feature en-
coding. Even without considering feature encoding, our pro-
posed method also achieves a better performance than PD.
Further more, our method performs better than the methods
focusing on the CNN architectures (Jaderberg et al. 2015;
Lin, RoyChowdhury, and Maji 2015): the former uses the
GoogleNet (Szegedy et al. 2015) with batch normaliza-
tion (Ioffe and Szegedy 2015) and achieves the accuracy
of 82.30% only fine-tuned on the CUB-200-2011 without
any other process; the latter uses two different CNN mod-

els: VGGNet which is same with our method and VGG-
M (Chatfield et al. 2014). Moreover, our method even out-
performs methods which use bounding box (Krause et al.
2015) (82.50%) or even part annotations (Zhang et al. 2014)
(76.37%), only beaten by (Zhang et al. 2016a) (85.14%) and
(Branson et al. 2014) (85.40%) which uses the annotations
(e.g. both bounding box and part annotations) at both train-
ing and testing stage.

Conclusions
In this paper, we have proposed a weakly supervised part
selection method with two spatial constraints which is free
of any object or part annotations. The first spatial constraint
defines the relationship between the object and its parts, and
aims to ensure that the selected parts are definitely located
inside the object, and have the largest overlap with the ob-
ject. The second spatial constraint defines the relationship
of parts and reduces the overlap with each other to avoid
the information redundancy. We combine two spatial con-
straints to promote part selection and achieve the best results
on CUB-200-2011 dataset under the weakly supervised con-
dition (only class label used). The experiments point out a
few future directions. First, since the box constraint plays
an import role, we will exploit the method for obtaining the
more accurate bounding box to improve the fine-grained im-
age classification performance. Second, inspired by (Zhang
et al. 2016b), we will focus on the work of feature encoding
for further improvement.
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